Forum for Illumination Research, Engineering, and Science (FIRES)

An Intuitive Metric for Lumen Maintenance

By Eric Bretschneider For better or for worse, the lighting industry commonly associates the lifetime of LEDs and LED-based lighting products with L70 – the amount of time for the lumen maintenance of an LED-based device to reach 70% of its initial value. Admittedly, the failure of other components, particularly those that provide power to LEDs, are more likely to determine the overall lifetime of an LED-based component or luminaire. However, only lumen maintenance is considered here. That being said,… Read More

Concerns in the Age of the LED: Temporal Light Artifacts

By Dr. James M. Gaines

Flicker and stroboscopic effect are presently hot topics in lighting, along with other subjects like blue light (subject of a recent FIRES article). A National Electrical Manufacturers Association (NEMA) standard, NEMA 77[1], addresses measures for temporal light artifacts (TLA), which is an umbrella term covering both flicker and stroboscopic effect (as well as phantom arrays; see Comment at the end). The NEMA metrics for flicker (short-term flicker indicator, Pst) and stroboscopic effect (Stroboscopic Visibility Measure, SVM) are both based on experiments done with many human observers, to measure average human sensitivity to flicker and stroboscopic effects. Read More

The Lighting Design Objectives (LiDOs) Procedure

By Christopher Cuttle, MA, PhD, FCIBSE, FIESANZ, FIESNA, FSLL Abstract This procedure is based on the concept that there is real advantage to be gained from changing the illumination metrics used for specifying, measuring and predicting lighting applications so that they relate to people’s responses to visible effects of lighting in indoor applications. The currently used illumination metrics are directed towards providing for visibility, or more specifically, enabling people to perform visual tasks efficiently and accurately. Proposals are made herein… Read More

A Reality Check on Blue Light Exposure

By Eric Bretschneider, Ph.D

How often do we hear about the dangers of blue light from LEDs? Such discussions inevitably include statements about “the intense blue peak” in LED lighting and the potential for damage from the massive amounts of blue light present in LED lighting.

The whole argument sounds plausible enough when we look at the spectrum of a typical white LED. The spectrum below is for a typical white LED with a CCT of 4,000 K at levels that approximate a typical commercial or retail environment (400 lux). The isolated peak in the blue clearly stands out, but does it really represent a massive dose of blue light? Read More

Melanopic Green The Other Side of Blue

By Ian Ashdown, P. Eng. (Ret.), FIES
Senior Scientist, SunTracker Technologies Ltd.

Numerous medical studies have shown that exposure to blue light at night suppresses the production of melatonin by the pineal gland in our brains and so disrupts our circadian rhythms. As a result, we may have difficulty sleeping. It is therefore only common sense that we should specify warm white (3000 K) light sources wherever possible, especially for street lighting.

True or false? Read More

The Science of Light and Health: How to Interpret the Claims That Underlie Medical and Wellness Effects

By Douglas Steel, PhD
Founder and Chief Scientific Officer of NeuroSense

These are transformational times for the lighting industry. The cost of LED-based products has dropped dramatically. At the same time, increased sophistication and capabilities of tunable LED arrays, controls, and sensors now enable the commissioning of platforms that can precisely control light intensity, correlated color temperature, and relative spectral content. With this capability, we have entered a stage at which lighting can now be used not just for illumination, but to provide beneficial health effects. Supporting this is a new vocabulary of terms such as “human-centric lighting,” “bio-centric lighting,” “lighting for people” and others. However, few standards exist that provide guidance as to how lights should be controlled so as to confer benefits. Read More

Lighting and the Internet of Things

By Robert F. Karlicek, Jr., Ph.D. Professor of Electrical, Computer and Systems Engineering Director, Center for Lighting Enabled Systems & Applications Rensselaer Polytechnic Institute The Internet of Things (IoT) is a hot topic these days, driven by the explosion of low-cost sensors, microprocessors, and wireless communications to provide new types of services for consumers and businesses. When these IoT platforms are dispersed in any environment huge amounts of data about energy use, environmental conditions, and human activity can be generated.… Read More

The Science of Near-Infrared Lighting: Fact or Fiction

By Ian Ashdown, P. Eng. (Ret.), FIES, Senior Scientist, SunTracker Technologies Ltd.

There is a common-sense argument being presented in the popular media that since humans evolved under sunlight, our bodies must surely make use of all the solar energy available to us. Given that more than 50 percent of this energy is due to near-infrared radiation, we are clearly risking our health and well-being by using LED lighting that emits no near-infrared radiation whatsoever. Read More

FIRES Policies and Submission Information

The Forum for Illumination Research, Engineering, and Science (FIRES) is the IES online space for our community to openly share and discuss the latest research and innovations in illumination science and engineering. As a space for the free dissemination of knowledge and exchange of ideas, FIRES is intended to foster relationships between individuals and larger institutions, and reignite the emphasis on science and engineering in the lighting industry. Editorial Disclaimer The views expressed in articles published on FIRES do not… Read More

Leave a Reply